

Textract Plus

As undesirable as it might be, more often than not there is extremely
useful information embedded in Word documents, PowerPoint
presentations, PDFs, etc—so-called “dark data”—that would be
valuable for further textual analysis and visualization. While
several packages exist for extracting content from
each of these formats on their own, this package provides a single
interface for extracting content from any type of file, without any
irrelevant markup.

This package provides two primary facilities for doing this, the
command line interface

textractplus path/to/file.extension

or the python package

some python file
import textractplus as tp
text = tp.process("path/to/file.extension")

Currently supporting

textract-plus supports a growing list of file types for text extraction. If
you don’t see your favorite file type here, Please recommend other
file types by either mentioning them on the issue tracker [https://github.com/VaibhavHaswani/textract-plus/issues] or by
contributing a pull request.

	.csv via python builtins

	.tsv and .tab via python builtins

	.doc via antiword [http://www.winfield.demon.nl/]

	.docx via python-docx2txt [https://github.com/ankushshah89/python-docx2txt]

	.eml via python builtins

	.epub via ebooklib [https://github.com/aerkalov/ebooklib]

	.gif via tesseract-ocr [https://code.google.com/p/tesseract-ocr/]

	.jpg and .jpeg via tesseract-ocr [https://code.google.com/p/tesseract-ocr/]

	.json via python builtins

	.html and .htm via beautifulsoup4 [http://beautiful-soup-4.readthedocs.org/en/latest/]

	.mp3 via sox [http://sox.sourceforge.net/], SpeechRecognition [https://pypi.python.org/pypi/SpeechRecognition/], and pocketsphinx [https://github.com/cmusphinx/pocketsphinx/]

	.msg via msg-extractor [https://github.com/mattgwwalker/msg-extractor]

	.odt via python builtins

	.ogg via sox [http://sox.sourceforge.net/], SpeechRecognition [https://pypi.python.org/pypi/SpeechRecognition/], and pocketsphinx [https://github.com/cmusphinx/pocketsphinx/]

	.pdf via pdftotext [http://poppler.freedesktop.org/] (default) or pdfminer.six [https://github.com/goulu/pdfminer]

	.png via tesseract-ocr [https://code.google.com/p/tesseract-ocr/]

	.pptx via python-pptx [https://python-pptx.readthedocs.org/en/latest/]

	.ps via ps2ascii [https://www.ghostscript.com/doc/current/Use.htm]

	.rtf via unrtf [http://www.gnu.org/software/unrtf/]

	.tiff and .tif via tesseract-ocr [https://code.google.com/p/tesseract-ocr/]

	.txt via python builtins

	.wav via SpeechRecognition [https://pypi.python.org/pypi/SpeechRecognition/] and pocketsphinx [https://github.com/cmusphinx/pocketsphinx/]

	.xlsx via xlrd [https://pypi.python.org/pypi/xlrd]

	.xls via xlrd [https://pypi.python.org/pypi/xlrd]

Extended with Textract Plus

	.dotx via docx2python [https://github.com/ShayHill/docx2python]

	.docm via docx2python [https://github.com/ShayHill/docx2python]

	.pptm via python-pptx [https://python-pptx.readthedocs.org/en/latest/]

Related projects

Of course, textract-plus isn’t the first project with the aim to provide a
simple interface for extracting text from any document. But this is,
to the best of my knowledge, the only project that is written in
python (a language commonly chosen by the natural language processing
community) and is method agnostic about how content is extracted. I’m sure that there are other similar projects out
there, but here is a small sample of similar projects:

	Apache Tika [http://tika.apache.org/] has very similar, if not
identical, aims as textract-plus [https://github.com/VaibhavHaswani/textract-plus/issues/12] and has
impressive coverage of a wide range of file formats. It is written
in java.

	textract (node.js) [https://github.com/dbashford/textract] has
similar aims as this textract-plus package (including an identical name!
great minds…). It is written in node.js.

	pandoc [http://johnmacfarlane.net/pandoc/] is intended to be a
document conversion tool (a much more difficult task!), but it does have
the ability to convert to plain text [http://johnmacfarlane.net/pandoc/demos.html]. It is written in
Haskell.

Contents:

	Command line interface
	textract-plus

	Python package
	Additional options

	A look under the hood

	A few specific examples

	Installation
	Ubuntu / Debian

	OSX

	FreeBSD

	Don’t see your operating system installation instructions here?

	Contributing
	Quick start

	Change Log
	latest changes in development for next release

	0.1

Indices and tables

	Index

	Module Index

	Search Page

Command line interface

textract-plus

Note

To make the command line interface as usable as possible,
autocompletion of available options with textract-plus is enabled by
@kislyuk’s amazing argcomplete [https://github.com/kislyuk/argcomplete] package. Follow
instructions to enable global autocomplete [https://github.com/kislyuk/argcomplete#activating-global-completion]
and you should be all set. As an example, this is also configured
in the virtual machine provisioning for this project [https://github.com/VaibhavHaswani/textract-plus/blob/master/provision/development.sh#L17].

Python package

This package is organized to make it as easy as possible to add new
extensions and support the continued growth and coverage of
textractplus. For almost all applications, you will just have to do
something like this:

import textractplus
text = textractplus.process('path/to/file.extension')

to obtain text from a document. You can also pass keyword arguments to
textractplus.process, for example, to use a particular method for
parsing a pdf like this:

import textractplus
text = textractplus.process('path/to/a.pdf', method='pdfminer')

or to specify a particular output encoding (input encodings are
inferred using chardet [https://github.com/chardet/chardet]):

import textractplus
text = textractplus.process('path/to/file.extension', encoding='ascii')

When the file name has no extension, you specify the file’s extension as an argument
to textractplus.process like this:

import textractplus
text = textractplus.process('path/to/file', extension='docx')

Additional options

Some parsers also enable additional options which can be passed in as keyword
arguments to the textractplus.process function. Here is a quick table of
available options that are available to the different types of parsers:

	parser

	option

	description

	gif

	language

	Specify the language [https://code.google.com/p/tesseract-ocr/downloads/list] for OCR-ing text with tesseract

	jpg

	language

	Specify the language [https://code.google.com/p/tesseract-ocr/downloads/list] for OCR-ing text with tesseract

	pdf

	language

	For use when method='tesseract', specify the language [https://code.google.com/p/tesseract-ocr/downloads/list]

	pdf

	layout

	With method='pdftotext' (default), preserve the layout

	png

	language

	Specify the language [https://code.google.com/p/tesseract-ocr/downloads/list] for OCR-ing text with tesseract

	tiff

	language

	Specify the language [https://code.google.com/p/tesseract-ocr/downloads/list] for OCR-ing text with tesseract

As an example of using these additional options, you can extract text from a
Norwegian PDF using Tesseract OCR like this:

text = textractplus.process(
 'path/to/norwegian.pdf',
 method='tesseract',
 language='nor',
)

A look under the hood

When textractplus.process('path/to/file.extension') is called,
textractplus.process looks for a module called
textractplus.parsers.extension_parser that also contains a Parser.

	
textractplus.parsers.process(filename, input_encoding=None, output_encoding='utf_8', extension=None, **kwargs)

	This is the core function used for extracting text. It routes the
filename to the appropriate parser and returns the extracted
text as a byte-string encoded with encoding.

Importantly, the textractplus.parsers.extension_parser.Parser class
must inherit from textractplus.parsers.utils.BaseParser.

Many of the parsers rely on command line utilities to do some of the
parsing. For convenience, the textractplus.parsers.utils.ShellParser
class includes some convenience methods for streamlining access to the
command line.

A few specific examples

There are quite a few parsers included with textractplus. Rather than
elaborating all of them, here are a few that demonstrate how parsers
work.

Installation

One of the main goals of textract-plus is to make it as easy as possible to
start using textract-plus (meaning that installation should be as quick and
painless as possible). This package is built on top of several python
packages and other source libraries. Assuming you are using pip or
easy_install to install textract-plus, the python packages [https://github.com/VaibhavHaswani/textract-plus/blob/master/requirements/python]
are all installed by default with textract-plus. The source libraries are a
separate matter though and largely depend on your operating system.

Ubuntu / Debian

There are two steps required to run this package on
Ubuntu/Debian. First you must install some system packages using the
apt-get [https://help.ubuntu.com/14.04/serverguide/apt-get.html]
package manager before installing textract-plus from pypi.

apt-get install python-dev libxml2-dev libxslt1-dev antiword unrtf poppler-utils pstotext tesseract-ocr \
flac ffmpeg lame libmad0 libsox-fmt-mp3 sox libjpeg-dev swig libpulse-dev
pip install textract-plus

Note

It may also be necessary to install zlib1g-dev on Docker
instances of Ubuntu. See issue #19 [https://github.com/VaibhavHaswani/textract-plus/pull/19] for details

OSX

These steps rely on you having homebrew [http://brew.sh/] installed
as well as the cask [http://caskroom.io/] plugin (brew tap caskroom/cask). The basic idea is to first install
XQuartz [https://xquartz.macosforge.org/landing/] before
installing a bunch of system packages before installing textract-plus from
pypi.

brew install --cask xquartz
brew install poppler antiword unrtf tesseract swig
pip install textract-plus

Note

pstotext [http://pages.cs.wisc.edu/~ghost/doc/pstotext.htm] is
not currently a part of homebrew so .ps extraction must be
enabled by manually installing from source.

Note

Depending on how you have python configured on your system with
homebrew, you may also need to install the python
development header files for textract-plus to properly install.

FreeBSD

Setting up this package on FreeBSD pretty much follows the steps for
Ubuntu / Debian while using pkg as package manager.

pkg install lang/python38 devel/py-pip textproc/libxml2 textproc/libxslt textproc/antiword textproc/unrtf \
graphics/poppler print/pstotext graphics/tesseract audio/flac multimedia/ffmpeg audio/lame audio/sox \
graphics/jpeg-turbo
pip install textract-plus

Don’t see your operating system installation instructions here?

My apologies! Installing system packages is a bit of a drag and its
hard to anticipate all of the different environments that need to be
accomodated (wouldn’t it be awesome if there were a system-agnostic
package manager or, better yet, if python could install these system
dependencies for you?!?!). If you’re operating system doesn’t have
documenation about how to install the textract-plus dependencies, please
contribute a pull request with:

	A new section in here with the appropriate details about how to
install things. In particular, please give instructions for how to
install the following libraries before running pip install
textract-plus:

	libxml2 2.6.21 or later [http://xmlsoft.org/downloads.html]
is required by the .docx parser which uses lxml [http://lxml.de/installation.html#requirements] via
python-docx.

	libxslt 1.1.15 or later [http://xmlsoft.org/XSLT/downloads.html] is required by the
.docx parser which users lxml [http://lxml.de/installation.html#requirements] via
python-docx.

	python header files are required for building lxml.

	antiword [http://www.winfield.demon.nl/] is required by the
.doc parser.

	pdftotext [http://poppler.freedesktop.org/] is optionally
required by the .pdf parser (there is a pure python fallback
that works if pdftotext isn’t installed).

	pstotext [http://pages.cs.wisc.edu/~ghost/doc/pstotext.htm]
is required by the .ps parser.

	tesseract-ocr [https://code.google.com/p/tesseract-ocr/]
is required by the .jpg, .png and .gif parser.

	sox [http://sox.sourceforge.net/]
is required by the .mp3 and .ogg parser.
You need to install ffmpeg, lame, libmad0 and libsox-fmt-mp3,
before building sox, for these filetypes to work.

	Add a requirements file to the requirements directory [https://github.com/VaibhavHaswani/textract-plus/tree/master/requirements]
of the project with the lower-cased name of your operating system
(e.g. requirements/windows) so we can try to keep these things
up to date in the future.

Contributing

The overarching goal of this project is to make it as easy as possible
to extract raw text from any document for the purposes of most natural
language processing tasks. In practice, this means that this project
should preferentially provide tools that correctly produce output that
has words in the correct order but that whitespace between words,
formatting, etc is totally irrelevant. As the various parsers mature,
I fully expect the output to become more readable to support
additional use cases, like extracting text to appear in web pages [https://github.com/deanmalmgren/textract/pull/58#issuecomment-53697943].

Importantly, this project is committed to being as agnostic about how
the content is extracted as it is about the means in which the text is
analyzed downstream. This means that textract should support
multiple modes of extracting text from any document and provide
reasonably good defaults (defaulting to tools that tend to produce the
correct word sequence).

Another important aspect of this project is that we want to have
extremely good documentation. If you notice a type-o, error, confusing
statement etc, please fix it!

Quick start

	Fork [https://github.com/deanmalmgren/textract/fork] and clone the
project:

git clone https://github.com/YOUR-USERNAME/textract.git

	Contribute! There are several open issues [https://github.com/deanmalmgren/textract/issues] that provide
good places to dig in. Check out the contribution guidelines [https://github.com/deanmalmgren/textract/blob/master/CONTRIBUTING.md]
and send pull requests; your help is greatly appreciated!

Depending on your development preferences, there are lots of ways to
get started developing with textract:

Developing in a native Ubuntu environment

	Install all the necessary system packages:

./provision/travis-mock.sh
./provision/debian.sh

optionally run some of the steps in these scripts, but you
may want to be selective about what you do as they alter global
environment states
./provision/python.sh
./provision/development.sh

	On the virtual machine, make sure everything is working by running
the suite of functional tests:

nosetests

These functional tests are designed to be run on an Ubuntu 12.04
LTS server, just like the virtual machine and the server that runs
the travis-ci test suite. There are some other tests that have been
added along the way in the Travis configuration [https://github.com/deanmalmgren/textract/blob/master/.travis.yml]. For
your convenience, you can run all of these tests with:

./tests/run.py

Current build status: [image: Build Status] [https://travis-ci.org/deanmalmgren/textract]

Developing with Vagrant virtual machine

	Install Vagrant [http://vagrantup.com/downloads] and
Virtualbox [https://www.virtualbox.org/wiki/Downloads] and launch
the development virtual machine:

vagrant plugin install iniparse
vagrant up && vagrant provision

On vagrant sshing to the virtual machine, note that the
PYTHONPATH and PATH environment variables have been
altered in this virtual machine [https://github.com/deanmalmgren/textract/blob/master/provision/development.sh]
so that any changes you make to textract in development are
automatically incorporated into the command.

	See step 4 in the Ubuntu development environment.
Current build status: [image: Build Status] [https://travis-ci.org/deanmalmgren/textract]

Developing with Docker container

	Go to the Docker
documentation [http://docs.docker.com/installation/ubuntulinux/]
and follow the instructions under “If you’d like to try the latest
version of Docker” to install Docker.

	Just run tests/run_docker_tests.sh to run the full test suite.
Current build status: [image: Build Status] [https://travis-ci.org/deanmalmgren/textract]

Change Log

latest changes in development for next release

0.1

	Extended document support including:
* PPTM , DOCM and DOTX support added

Index

 P

P

 	
 	process() (in module textractplus.parsers)

 nav.xhtml

 Table of Contents

 		
 Textract Plus

 		
 Command line interface

 		
 textract-plus

 		
 Python package

 		
 Additional options

 		
 A look under the hood

 		
 A few specific examples

 		
 Installation

 		
 Ubuntu / Debian

 		
 OSX

 		
 FreeBSD

 		
 Don’t see your operating system installation instructions here?

 		
 Contributing

 		
 Quick start

 		
 Developing in a native Ubuntu environment

 		
 Developing with Vagrant virtual machine

 		
 Developing with Docker container

 		
 Change Log

 		
 latest changes in development for next release

 		
 0.1

_static/plus.png

_static/file.png

_static/minus.png

_images/textract.png

